On the mechanism of inhibition of cytochrome c oxidase by nitric oxide.
نویسندگان
چکیده
The mechanism of inhibition of cytochrome (cyt) c oxidase by nitric oxide (NO) has been investigated by stopped flow transient spectroscopy and singular value decomposition analysis. Following the time course of cyt c oxidation at different O2/NO ratios, we observed that the onset of inhibition: (i) is fast and at a high NO concentration is complete during the first turnover; (ii) is sensitive to the O2/NO ratio; and (iii) is independent of incubation time of the oxidized enzyme with NO. Analysis of the reaction kinetics and computer simulations support the conclusion that inhibition occurs via binding of NO to a turnover intermediate with a partially reduced cyt a3-CuB binuclear center. The inhibited enzyme has the optical spectrum typical of NO bound to reduced cyt a3. Reversal of inhibition in the presence of O2 does not involve a direct reaction of O2 with NO while bound at the binuclear center, since recovery of activity occurs at the rate of NO dissociation (k = 0.13 s-1), as determined in the absence of O2 using hemoglobin as a NO scavenger. We propose that removal of NO from the medium is associated with reactivation of the enzyme via a relatively fast thermal dissociation of NO from the reduced cyt a3-CuB center.
منابع مشابه
Nitric oxide from neuronal nitric oxide synthase sensitises neurons to hypoxia-induced death via competitive inhibition of cytochrome oxidase.
Hypoxia/ischaemia is known to trigger neuronal death, but the role of neuronal nitric oxide synthase (nNOS) in this process is controversial. Nitric oxide (NO) inhibits cytochrome oxidase in competition with oxygen. We tested whether NO derived from nNOS synergises with hypoxia to induce neuronal death by inhibiting mitochondrial cytochrome oxidase. Sixteen hours of hypoxia (2% oxygen) plus deo...
متن کاملThe mechanism of cytochrome C oxidase inhibition by nitric oxide.
The basic biochemistry of the inhibition of cytochrome oxidase by NO is reviewed. Three possible mechanisms that include the binding of NO to the fully reduced Fe(a3)-Cu(B) site, to the semi-reduced Fe(a3)-Cu(B) site, and to the fully oxidized Fe(a3)-Cu(B) site are confronted with the experimental data. Mathematical models are used to facilitate the analysis and to solve puzzling observations c...
متن کاملCytochrome c oxidase maintains mitochondrial respiration during partial inhibition by nitric oxide.
Nitric oxide (NO), generated endogenously in NO-synthase-transfected cells, increases the reduction of mitochondrial cytochrome c oxidase (CcO) at O2 concentrations ([O2]) above those at which it inhibits cell respiration. Thus, in cells respiring to anoxia, the addition of 2.5 microM L-arginine at 70 microM O2 resulted in reduction of CcO and inhibition of respiration at [O2] of 64.0+/-0.8 and...
متن کاملNitric oxide regulation of mitochondrial oxygen consumption II: Molecular mechanism and tissue physiology.
Nitric oxide (NO) is an intercellular signaling molecule; among its many and varied roles are the control of blood flow and blood pressure via activation of the heme enzyme, soluble guanylate cyclase. A growing body of evidence suggests that an additional target for NO is the mitochondrial oxygen-consuming heme/copper enzyme, cytochrome c oxidase. This review describes the molecular mechanism o...
متن کاملENZYME INHIBITION BY HERBAL MOLLUSCICIDES IN THE NERVOUS TISSUE OF THE SNAIL LYMNAEA ACUMINATA
The effect of Annona squamosa, Lawsonia inermis and their combination with other herbal molluscicides were studied on different enzyme activity in the nervous tissue of Lymnaea acuminata. Twenty-Four hour in vivo exposure to 40% and 80% of 24 h LC50 of plant derived molluscicides and their combination with other molluscicides such as Cedrus deodara, Azadirachta indica oil, Allium sativum, Polia...
متن کاملDetermination of Optimum Conditions for the Production of Peptides with Antioxidant and Nitric-Oxide Inhibition Properties from Protein Hydrolysis of Pumpkin Seed Meals Using Pepsin Enzyme
Background and Objectives: In this study, hydrolysis condition optimization of the pumpkin (Cucurbita pepo) seed proteins was carried out achieve maximum DPPH radical scavenging and nitric-oxide inhibition properties using Design Expert Software and response surface methodology. Materials & Methods: In general, 1–3% concentrations of pepsin enzyme, 30–40 °C temperature and 120–100 min time we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 271 52 شماره
صفحات -
تاریخ انتشار 1996